Geometry v. Gerrymandering: Potential Mathematical Solutions to a Political Problem

Richard G. Ligo

Gannon University

November 7, 2017
Introduction

Gerrymandering
Richard G. Ligo

Introduction
Background
Quantitative Tests
Compactness
Random maps
Efficiency gap
Conclusion
Introduction
Introduction
Introduction
Introduction
Introduction

Gerrymandering is the intentional manipulation of election district boundaries to gain political advantage.
Gerrymandering is the intentional manipulation of election district boundaries to gain political advantage.
Overview

- Introduction
- Background
 - Examples
 - History
 - Current relevance
- Quantitative tests
 - District compactness
 - Random map generation
 - Efficiency gap
Examples

Say we have 15 voters:
Examples

Say we have 15 voters:

- District 1
- District 2
- District 3

Conclusion: Boundaries can profoundly impact outcomes.
Examples

Say we have 15 voters:

District 1

District 2

District 3

Green wins 2-1.
Examples

Say we have 15 voters:

District 1
District 2
District 3

Conclusion: Boundaries can profoundly impact outcomes.
Examples

Say we have 15 voters:

District 1

District 2

District 3

Orange wins 2-1.
Examples

Say we have 15 voters:

\[\text{District 1} \quad \text{District 2} \quad \text{District 3}\]

Orange wins 2-1.

Conclusion: Boundaries can profoundly impact outcomes.
Examples

Republican Congressional Map Used in 2012 and 2014

Hypothetical Democratic Congressional Map

Hypothetical Nonpartisan Congressional Map

Swing Districts

Democratic Districts

Republican Districts

3 10

9 4 0

5 5 3

11 10 12
8 6 9
4 13 2
7 1 3

11 10 12
8 6 9
4 13 2
7 1 3
History

- Governor E. Gerry, 1812
History

- Governor E. Gerry, 1812
History

- Governor E. Gerry, 1812

“Courts ought not to enter this political thicket.”
- Justice F. Frankfurter
History

- Governor E. Gerry, 1812
- Davis v. Bandemer, 1986

"Courts ought not to enter this political thicket."
- Justice F. Frankfurter
History

- Governor E. Gerry, 1812
- Davis v. Bandemer, 1986
- Vieth v. Jubelirer, 2004

“Courts ought not to enter this political thicket.”
- Justice F. Frankfurter
History

- Governor E. Gerry, 1812
- Davis v. Bandemer, 1986
- Vieth v. Jubelirer, 2004
- LULAC v. Perry, 2006

“Courts ought not to enter this political thicket.”
- Justice F. Frankfurter
History

- Governor E. Gerry, 1812
- Davis v. Bandemer, 1986
- Vieth v. Jubelirer, 2004
- LULAC v. Perry, 2006
- Gill v. Whitford, 2017

“Courts ought not to enter this political thicket.”
- Justice F. Frankfurter
Gill v. Whitford:
Current Relevance

Gill v. Whitford:
2011: Wisconsin districts redrawn by state legislature
Current Relevance

Gill v. Whitford:

2011: Wisconsin districts redrawn by state legislature
2015: Wisconsin citizens filed case against state
Current Relevance

Gill v. Whitford:
2011: Wisconsin districts redrawn by state legislature
2015: Wisconsin citizens filed case against state

“In a democracy citizens are supposed to choose their legislators. In Wisconsin, legislators have chosen their voters.”
- Plaintiff W. Whitford
Current Relevance

Gill v. Whitford:
2011: Wisconsin districts redrawn by state legislature
2015: Wisconsin citizens filed case against state
2016: Wisconsin district court orders districts redrawn

“In a democracy citizens are supposed to choose their legislators. In Wisconsin, legislators have chosen their voters.”
- Plaintiff W. Whitford
Current Relevance

Gill v. Whitford:

2011: Wisconsin districts redrawn by state legislature
2015: Wisconsin citizens filed case against state
2016: Wisconsin district court orders districts redrawn
2017: State’s appeal heard by the Supreme Court

“In a democracy citizens are supposed to choose their legislators. In Wisconsin, legislators have chosen their voters.”

- Plaintiff W. Whitford
Current Relevance

Gill v. Whitford:

2011: Wisconsin districts redrawn by state legislature
2015: Wisconsin citizens filed case against state
2016: Wisconsin district court orders districts redrawn
2017: State’s appeal heard by the Supreme Court
2018: SCOTUS Decision expected in June

“In a democracy citizens are supposed to choose their legislators. In Wisconsin, legislators have chosen their voters.”

- Plaintiff W. Whitford
A Mathematical Approach?

“If workable standards do emerge to measure these burdens, however, courts should be prepared to order relief.”

- Justice A. Kennedy
Compactness

North Carolina, District 12
Compactness

Florida, District 3
Compactness

Idea:
Measure shape "compactness" by comparing perimeter to the perimeter of a circle with the same area.

\[
\text{circle} \quad A = 1 \quad P \approx 3.145
\]

\[
\text{square} \quad A = 1 \quad P = 4
\]
Compactness

Idea:
Measure shape “compactness” by comparing perimeter to the perimeter of a circle with the same area.
Compactness

Idea:
Measure shape “compactness” by comparing perimeter to the perimeter of a circle with the same area.

\[A = 1 \]

\[P \approx 3.545 \]
Compactness

Idea:
Measure shape “compactness” by comparing perimeter to the perimeter of a circle with the same area.

\[
\begin{align*}
\text{circle} & : A = 1 \\
& : P \approx 3.545 \\
\text{square} & : A = 1 \\
& : P = 4
\end{align*}
\]
Compactness

Idea:
Measure shape “compactness” by comparing perimeter to the perimeter of a circle with the same area.

\[
\text{circle} \quad A = 1 \\
\quad P \approx 3.545
\]

\[
\text{rectangle} \quad A = 1 \\
\quad P = 5
\]
Compactness

Idea:
Measure shape “compactness” by comparing perimeter to the perimeter of a circle with the same area.

\[A = 1 \]
\[P \approx 3.545 \]
\[A = 1 \]
\[P = 5 \]
\[A = 1 \]
\[P = 8.5 \]
Compactness

Idea:
Measure shape “compactness” by comparing perimeter to the perimeter of a circle with the same area.

\[
\text{circle} \quad A = 1 \quad P \approx 3.545
\]
Compactness

Idea:
Measure shape “compactness” by comparing perimeter to the perimeter of a circle with the same area.

\[
\begin{align*}
&\text{circle} \\
&A = 1 \\
&P \approx 3.545
\end{align*}
\]

\[
\begin{align*}
&\text{equilateral triangle} \\
&A = 1 \\
&P \approx 4.559
\end{align*}
\]
Compactness

Idea:
Measure shape “compactness” by comparing perimeter to the perimeter of a circle with the same area.

- **Circle**
 - Area: $A = 1$
 - Perimeter: $P \approx 3.545$

- **Five-pointed star**
 - Area: $A = 1$
 - Perimeter: $P \approx 6.857$
Compactness

Idea:
Measure shape “compactness” by comparing perimeter to the perimeter of a circle with the same area.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Area</th>
<th>Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circle</td>
<td>$A = 1$</td>
<td>$P \approx 3.545$</td>
</tr>
<tr>
<td>“Snowflake”</td>
<td>$A = 1$</td>
<td>$P \approx 11.475$</td>
</tr>
</tbody>
</table>
Compactness

A troublesome example...
Compactness

A troublesome example...

Louisiana, District 1
Compactness

Strengths:
Compactness

Strengths:
- Intuitively seen
Compactness

Strengths:

- Intuitively seen
- Straightforward calculation
Compactness

Strengths:
- Intuitively seen
- Straightforward calculation
- Coincides with notion of gerrymandering
Compactness

Strengths:
- Intuitively seen
- Straightforward calculation
- Coincides with notion of gerrymandering

Weaknesses:
- Problematic near water
- Reasonable compactness standards unclear
- Fails to prevent all gerrymandering

Conclusion:
Simple compactness restrictions merely limit the range of tactics available for drawing unfair maps.
Compactness

Strengths:

- Intuitively seen
- Straightforward calculation
- Coincides with notion of gerrymandering

Weaknesses:

- Problematic near water
Compactness

Strengths:
- Intuitively seen
- Straightforward calculation
- Coincides with notion of gerrymandering

Weaknesses:
- Problematic near water
- Reasonable compactness standards unclear
Compactness

Strengths:
- Intuitively seen
- Straightforward calculation
- Coincides with notion of gerrymandering

Weaknesses:
- Problematic near water
- Reasonable compactness standards unclear
- Fails to prevent all gerrymandering
Compactness

Strengths:
- Intuitively seen
- Straightforward calculation
- Coincides with notion of gerrymandering

Weaknesses:
- Problematic near water
- Reasonable compactness standards unclear
- Fails to prevent all gerrymandering

Conclusion: Simple compactness restrictions merely limit the range of tactics available for drawing unfair maps.
Compactness
Random map generation

Idea: What if we could compare any particular map to all potential maps?
Random map generation

Idea: What if we could compare any particular map to all potential maps?

Problem: There are infinitely many possible maps.
Random map generation

Idea: What if we could compare any particular map to all potential maps?

Problem: There are infinitely many possible maps.

Solution: Randomly generate a representative sample of possible maps to compare against.
Random map generation

Idea: What if we could compare any particular map to all potential maps?

Problem: There are infinitely many possible maps.

Solution: Randomly generate a representative sample of possible maps to compare against.

Parallel Evolutionary Algorithm for Redistricting
Random map generation

Useful comparisons can include the following:
Random map generation

Useful comparisons can include the following:

- Compactness
Random map generation

Useful comparisons can include the following:

- Compactness
- Competitiveness
- Responsiveness
- Biasedness
Random map generation

Useful comparisons can include the following:

- Compactness
- Competitiveness
- Responsiveness
- Biasedness
- Efficiency gap
Random map generation

2001 plan

2011 plan
Random map generation

2001 plan

2011 plan

Histograms showing competitiveness for 2001 and 2011 plans.
Random map generation

2001 plan

2011 plan

2001 plan

2011 plan
Random map generation

2001 plan

2011 plan

Biasedness

2001 plan

2011 plan

Quantitative Tests

Compactness

Random maps

Efficiency gap

Conclusion
Random map generation

2001 plan

2011 plan

Efficiency Gap

2001 plan

2011 plan
Random map generation

Simulated North Carolinian congressional districts:

- Districts favor Democrats: Democrats win 10-3
- Districts favor Republicans: Republicans win 11-2
- Districts are competitive: Republicans win 7-6
- Districts are compact: Republicans win 9-4
Human geography has a significant effect.
Random map generation

Human geography has a significant effect.
Random map generation

Strengths:
Random map generation

Strengths:

▶ Data-driven results
Random map generation

Strengths:

- Data-driven results
- Suggests potential maps
Random map generation

Strengths:

▶ Data-driven results
▶ Suggests potential maps
▶ Coincides with notion of gerrymandering
Random map generation

Strengths:

- Data-driven results
- Suggests potential maps
- Coincides with notion of gerrymandering

Weaknesses:

- Leaves "standard" question unanswered
- Very expensive computationally
- "Black box" process

Conclusion:

Random map generation is an outstanding tool for evaluating a given map by comparison.
Random map generation

Strengths:

- Data-driven results
- Suggests potential maps
- Coincides with notion of gerrymandering

Weaknesses:

- Leaves “standard” question unanswered
Random map generation

Strengths:
- Data-driven results
- Suggests potential maps
- Coincides with notion of gerrymandering

Weaknesses:
- Leaves “standard” question unanswered
- Very expensive computationally
Random map generation

Strengths:
- Data-driven results
- Suggests potential maps
- Coincides with notion of gerrymandering

Weaknesses:
- Leaves “standard” question unanswered
- Very expensive computationally
- “Black box” process

Strengths:
- Data-driven results
- Suggests potential maps
- Coincides with notion of gerrymandering

Weaknesses:
- Leaves “standard” question unanswered
- Very expensive computationally
- “Black box” process
Random map generation

Strengths:
- Data-driven results
- Suggests potential maps
- Coincides with notion of gerrymandering

Weaknesses:
- Leaves “standard” question unanswered
- Very expensive computationally
- “Black box” process

Conclusion: Random map generation is an outstanding tool for evaluating a given map by comparison.
The efficiency gap

LULAC v. Perry, 2006:
The efficiency gap

LULAC v. Perry, 2006:

“[Partisan symmetry is] widely accepted by scholars as providing a measure of partisan fairness in electoral systems.”
- Justice J. P. Stevens
The efficiency gap

LULAC v. Perry, 2006:

“[Partisan symmetry is] widely accepted by scholars as providing a measure of partisan fairness in electoral systems.”
- Justice J. P. Stevens

“Interest in exploring this notion is evident.”
- Justice D. Souter
The efficiency gap

LULAC v. Perry, 2006:

“[Partisan symmetry is] widely accepted by scholars as providing a measure of partisan fairness in electoral systems.”
- Justice J. P. Stevens

“Interest in exploring this notion is evident.”
- Justice D. Souter

“[I do not] discount [symmetry’s] utility in redistricting, planning, and litigation.”
- Justice A. Kennedy
The efficiency gap

The *efficiency gap* is a tool that attempts to capture the elusive notion of partisan symmetry.
The efficiency gap

The efficiency gap is a tool that attempts to capture the elusive notion of partisan symmetry.

In particular, it accounts for “wasted” votes:
The efficiency gap is a tool that attempts to capture the elusive notion of partisan symmetry.

In particular, it accounts for “wasted” votes:

- Extra votes for a winning candidate
The efficiency gap

The efficiency gap is a tool that attempts to capture the elusive notion of partisan symmetry.

In particular, it accounts for “wasted” votes:
 ▶ Extra votes for a winning candidate
 ▶ All votes for a losing candidate
The efficiency gap

The *efficiency gap* is a tool that attempts to capture the elusive notion of partisan symmetry.

In particular, it accounts for “wasted” votes:
- Extra votes for a winning candidate
- All votes for a losing candidate

For two parties, A and B, the efficiency gap is given as

\[
\text{efficiency gap} = \frac{\text{wasted A votes} - \text{wasted B votes}}{\text{total votes cast}}
\]
The efficiency gap

Say we have 15 voters:

![Image showing orange and green dots to illustrate the efficiency gap]

\[
\text{wasted orange votes} = 4 \\
\text{wasted green votes} = 2 \\
\text{efficiency gap} = \frac{4 - 2}{15} \approx 13.3\%.
\]
The efficiency gap

Say we have 15 voters:

District 1
District 2
District 3

\[
\text{wasted orange votes} = 4 \\
\text{wasted green votes} = 2 \\
\text{efficiency gap} = 4 - 2 = \frac{15}{15} \approx 13.3\%.
\]
The efficiency gap

Say we have 15 voters:

- District 1
- District 2
- District 3

Wasted orange votes = 4

\[
\text{efficiency gap} = \frac{4}{15} \approx 13.3\%.
\]
The efficiency gap

Say we have 15 voters:

\[
\text{wasted orange votes} = 4 \\
\text{wasted green votes} = 2
\]
The efficiency gap

Say we have 15 voters:

- wasted orange votes = 4
- wasted green votes = 2

efficiency gap = \(\frac{4 - 2}{15} \approx 13.3\%\)
The efficiency gap

Say we have 15 voters:

District 1
District 2
District 3

= 1
= 6
\text{efficiency gap} = 1 - 6 = 15 \approx -0.33\%.
The efficiency gap

Say we have 15 voters:

\[
\begin{align*}
\text{wasted orange votes} &= 1 \\
\text{wasted green votes} &= 6 \\
\text{efficiency gap} &= \frac{1}{15} - \frac{6}{15} \approx -0.33\%.
\end{align*}
\]
The efficiency gap

Say we have 15 voters:

- Wasted orange votes = 1
- Wasted green votes = 6
The efficiency gap

Say we have 15 voters:

wasted orange votes = 1
wasted green votes = 6

efficiency gap = \frac{1 - 6}{15} \approx -33.3\%
Human geography has a very significant effect on the efficiency gap.

States with an efficiency gap of at least 7%.
The efficiency gap

Strengths:
The efficiency gap

Strengths:
- Straightforward calculation

Strengths:
- Straightforward calculation

Weaknesses:
- Statistically "noisy"
- Misled by poor voter turnout
- Fails to account for human geography

Conclusion:
The efficiency gap is a useful tool, but could be improved with a better understanding of geography.
The efficiency gap

Strengths:
- Straightforward calculation
- Results easily communicated

Conclusion: The efficiency gap is a useful tool, but could be improved with a better understanding of geography.
The efficiency gap

Strengths:
- Straightforward calculation
- Results easily communicated
- Captures partisan symmetry
The efficiency gap

Strengths:
- Straightforward calculation
- Results easily communicated
- Captures partisan symmetry

Weaknesses:
- Statistically "noisy"
- Misled by poor voter turnout
- Fails to account for human geography

Conclusion:
The efficiency gap is a useful tool, but could be improved with a better understanding of geography.
The efficiency gap

Strengths:
- Straightforward calculation
- Results easily communicated
- Captures partisan symmetry

Weaknesses:
- Statistically “noisy”

Strengths:
- Straightforward calculation
- Results easily communicated
- Captures partisan symmetry

Weaknesses:
- Statistically “noisy”

Conclusion: The efficiency gap is a useful tool, but could be improved with a better understanding of geography.
The efficiency gap

Strengths:
- Straightforward calculation
- Results easily communicated
- Captures partisan symmetry

Weaknesses:
- Statistically “noisy”
- Misled by poor voter turnout

Conclusion:
The efficiency gap is a useful tool, but could be improved with a better understanding of geography.
The efficiency gap

Strengths:
- Straightforward calculation
- Results easily communicated
- Captures partisan symmetry

Weaknesses:
- Statistically “noisy”
- Misled by poor voter turnout
- Fails to account for human geography
The efficiency gap

Strengths:

- Straightforward calculation
- Results easily communicated
- Captures partisan symmetry

Weaknesses:

- Statistically “noisy”
- Misled by poor voter turnout
- Fails to account for human geography

Conclusion: The efficiency gap is a useful tool, but could be improved with a better understanding of geography.
Conclusion

The aforementioned tools can be combined to bring empirical evidence against a particular district map.
The aforementioned tools can be combined to bring empirical evidence against a particular district map.

The SCOTUS response to this approach has been mixed:
Conclusion

The aforementioned tools can be combined to bring empirical evidence against a particular district map.

The SCOTUS response to this approach has been mixed:

“It reminds me a little bit of my steak rub. And so what’s this court supposed to do? A pinch of this, a pinch of that?”
- Justice N. Gorsuch
The aforementioned tools can be combined to bring empirical evidence against a particular district map.

The SCOTUS response to this approach has been mixed:

“I think the hard issue in this case is are there standards manageable by a court, not by some group of you know, computer experts?” - Justice S. Breyer
Conclusion

The aforementioned tools can be combined to bring empirical evidence against a particular district map.

The SCOTUS response to this approach has been mixed:

“It may be simply my educational background, but I can only describe it as sociological gobbledygook.”

- Chief Justice J. Roberts
Conclusion

The aforementioned tools can be combined to bring empirical evidence against a particular district map.

The SCOTUS response to this approach has been mixed:

“It may be simply my educational background, but I can only describe it as sociological gobbledygook.”
- Chief Justice J. Roberts

Conclusion: We must continue to work towards better tools.
Conclusion

Additional work on the subject:

- Tufts University workshop(s)
- Duke University project
- Application of Markov chains
- Other ideas?
References

